

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

GENETIC STATS

Predicted adult weight: **48 lbs** Genetic age: **23 human years**

Based on the date of birth you provided

TEST DETAILS

Kit number: EM-3374587

Swab number: 31001806013903

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

POODLE (STANDARD)

The Standard Poodle is a popular, water-loving dog used for centuries as a bird dog and popular pet. Poodles were established in Germany by the 15th century. Oddly enough, they are the national dog breed of France, and they were the most popular breed of dog in the United States throughout the 1960s and 70s. They're still quite popular today, owing to their intelligence, trainability, and non-shedding coats. Although well-known for their fancy fur, they're one of the most intelligent breeds of dog and require a lot of exercise and stimulation.

Fun Fact

From 1989 to 1991, John Suter raced a team of Poodles in the Iditarod. Although his teams placed in the back half of the pack, he managed to win \$2,000 in prize money before retiring his poodle team. The Iditarod has since changed its rules to specify that only northern dog breeds can compete.

RELATED BREEDS

Poodle (Toy) Sibling breed

Poodle
(Miniature)
Sibling breed

Maltese Cousin breed

HavaneseCousin breed

Bichon Frise Cousin breed

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

MATERNAL LINE

Through Stella's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B1b

Part of the large B1 haplogroup, we see this haplotype in village dogs across the world, including those from Central America, the Middle East, South Asia, and the French Polynesian Islands. Among the 31 breed dogs we see it in, we see it in Poodles, Otterhounds, and Labrador Retrievers. It is also our most commonly-sampled Golden Retriever haplotype!

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

TRAITS: COAT COLOR

TRAIT RESULT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity (I) Locus, which has yet to be genetically mapped. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

No dark hairs anywhere (ee)

K Locus (CBD103)

The K Locus **K**^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the **K**^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one **K**^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the **k**^y**k**^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as **K**^B**k**^y may be brindle rather than black or brown.

Not expressed (KBKB)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Not expressed (ata)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT

D Locus (MLPH)

Dogs with two copies of the **d** allele will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that dilute dogs have a higher incidence of Color Dilution Alopecia, especially in certain breeds. Dogs with one copy of the **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Not expressed (DD)

B Locus (TYRP1)

Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Likely black colored nose/feet (Bb)

Saddle Tan (RALY)

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus a^t allele, so dogs that do not express a^t are not influenced by this gene.

Not expressed (II)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an M*m result are likely to be phenotypically merle or could be "phantom" merle, that is, they have a merle allele that does not affect coat color. Dogs with an M*M* result are likely to be phenotypically merle or double merle. Dogs with an mm result have no merle alleles and are unlikely to have a merle coat pattern.

No merle alleles (mm)

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

TRAITS: OTHER COAT TRAITS

TRAIT RESULT

Furnishings (RSPO2) LINKAGE

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely furnished (mustache, beard, and/or eyebrows) (FF)

Coat Length (FGF5)

The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans. In dogs, the **T** allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral **G** allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier. In certain breeds (such as Corgi), the long haircoat is described as "fluff."

Likely long coat (TT)

Shedding (MC5R)

Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Likely light shedding (CC)

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Likely curly coat (TT)

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **ND** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat.

Very unlikely to be hairless (NN)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT RESULT

Hairlessness (FOXI3) LINKAGE

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Very unlikely to be hairless (NN)

Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism type 2 (OCA2), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely not albino (NN)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

TRAITS: OTHER BODY FEATURES

TRAIT RESULT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Likely medium or long muzzle (CC)

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Likely normal-length tail (CC)

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **TT** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT RESULT

Blue Eye Color (ALX4) LINKAGE

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Less likely to have blue eyes (NN)

Back Muscling & Bulk, Large Breed (ACSL4)

The T allele is associated with heavy muscling along the back and trunk in characteristically "bulky" large-breed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" T allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral C allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

TRAITS: BODY SIZE

TRAIT RESULT Body Size (IGF1) Intermediate (NI) The I allele is associated with smaller body size. **Body Size (IGFR1)** Larger (GG) The ${\bf A}$ allele is associated with smaller body size. **Body Size (STC2)** Larger (TT) The A allele is associated with smaller body size. Body Size (GHR - E195K) Intermediate (GA) The ${\bf A}$ allele is associated with smaller body size. Body Size (GHR - P177L) Larger (CC) The T allele is associated with smaller body size.

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

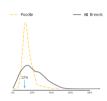
TRAITS: PERFORMANCE

TRAIT RESULT

Altitude Adaptation (EPAS1)

This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one $\bf A$ allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Normal altitude tolerance (GG)

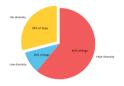

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

TRAITS: GENETIC DIVERSITY

TRAIT

12% Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

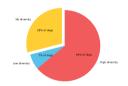


MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

No Diversity

How common is this amount of diversity in purebreds:



MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

No Diversity

How common is this amount of diversity in purebreds:

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

CLINICAL TRAITS

These clinical genetic traits can inform clinical decisions and diagnoses. These traits do not predict a disease state or increased risk for disease. We currently assess one clinical trait: Alanine Aminotransferase Activity.

Alanine Aminotransferase Activity result: Low Normal

Stella has one copy of a mutation associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Stella has this genotype, as ALT is often used as an indicator of liver health and Stella is likely to have a lower than average resting ALT activity. As such, an increase in Stella's ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

More information on Alanine Aminotransferase Activity:

The liver enzyme alanine aminotransferase, or ALT, is one of several values your veterinarian measures on routine blood work to gauge liver health. Dogs with one or more copies of the "A" allele are likely to have a lower baseline ALT activity ("low normal") than dogs with zero copies of the "A" allele ("normal"). This means that your veterinarian may recommend blood work to establish an individualized baseline ALT value during an annual wellness exam or before starting certain medications. You and your veterinarian would then be able to monitor your dog for any deviation from this established baseline. Please note that this mutation should never cause an increase in your dog's ALT activity and does not cause liver disease. If your dog has high ALT activity, please consult your veterinarian.

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

HEALTH

Good news! Stella did not test positive for any of the genetic conditions that Embark screens for.

O at risk

U

CARRIER

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

OTHER CONDITIONS

Good news! Stella tested clear for 8 genetic conditions that are common in her breed.

- Von Willebrand Disease Type I (VWF)
- Progressive Retinal Atrophy, prcd
 Progressive rod-cone degeneration (PRCD Exon 1)
- Degenerative Myelopathy, DM (SOD1A)
- Osteochondrodysplasia, Skeletal Dwarfism (SLC13A1)

- Congenital Macrothrombocytopenia
 (TUBB1 Exon 1, Cavalier King Charles Spaniel Variant)
- GM2 Gangliosidosis
 (HEXB, Poodle Variant)
- Neonatal Encephalopathy with Seizures, NEWS (ATF2)
- Chondrodystrophy and Intervertebral Disc Disease,
 CDDY/IVDD, Type I IVDD
 (FGF4 retrogene CFA12)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

FULL TEST PANEL

Stella is also clear of 162 other genetic health conditions that Embark tests for.

To help ensure healthy breeds, every test includes analysis of our full panel of over 160 genetic health conditions.

The following pages list out all the other genetic health conditions that Stella tested clear for.

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

- MDR1 Drug Sensitivity (MDR1) (Chromosome 14)
- P2Y12 Receptor Platelet Disorder (P2RY12) (Chromosome 23)
- Factor IX Deficiency, Hemophilia B (F9 Exon 7, Terrier Variant) (Chromosome X)
- Factor IX Deficiency, Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant) (Chromosome X)
- Factor VII Deficiency (F7 Exon 5) (Chromosome 22)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 10, Boxer Variant) (Chromosome X)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 11, Shepherd Variant 1) (Chromosome X)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 1, Shepherd Variant 2) (Chromosome X)
- Thrombopathia (RASGRP2 Exon 5, Basset Hound Variant) (Chromosome 18)
- Thrombopathia (RASGRP2 Exon 8) (Chromosome 18)
- Thrombopathia (RASGRP2 Exon 5, American Eskimo Dog Variant) (Chromosome 18)
- Von Willebrand Disease Type III, Type III vWD (VWF Exon 4) (Chromosome 27)
- Von Willebrand Disease Type II, Type II vWD (VWF) (Chromosome 27)
- Canine Leukocyte Adhesion Deficiency Type III, LAD3 (FERMT3) (Chromosome 18)
- Canine Elliptocytosis (SPTB Exon 30) (Chromosome 8)
- Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12) (Chromosome 9)
- May-Hegglin Anomaly (MYH9) (Chromosome 10)
- Prekallikrein Deficiency (KLKB1 Exon 8) (Chromosome 16)
- Pyruvate Kinase Deficiency (PKLR Exon 5) (Chromosome 7)
- Pvruvate Kinase Deficiency (PKLR Exon 7 Labrador Variant) (Chromosome 7)
- Pyruvate Kinase Deficiency (PKLR Exon 7 Pug Variant) (Chromosome 7)
- Pyruvate Kinase Deficiency (PKLR Exon 7 Beagle Variant) (Chromosome 7)
- Pyruvate Kinase Deficiency (PKLR Exon 10) (Chromosome 7)
- Trapped Neutrophil Syndrome (VPS13B) (Chromosome 13)
- · Ligneous Membranitis, LM (PLG) (Chromosome 1)
- · Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) (Chromosome 17)
- · Complement 3 Deficiency, C3 Deficiency (C3) (Chromosome 20)
- Severe Combined Immunodeficiency (PRKDC) (Chromosome 29)
- Severe Combined Immunodeficiency (RAG1) (Chromosome 18)
- X-linked Severe Combined Immunodeficiency (IL2RG Variant 1) (Chromosome X)
- X-linked Severe Combined Immunodeficiency (IL2RG Variant 2) (Chromosome X)
- Progressive Retinal Atrophy, rcd1 Rod-cone dysplasia, rcd1 (PDE6B Exon 21 Irish Setter Variant) (Chromosome 3)
- Progressive Retinal Atrophy, rcd3 Rod-cone dysplasia, rcd3 (PDE6A) (Chromosome 4)
- Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9) (Chromosome 13)
- Progressive Retinal Atrophy (CNGB1) (Chromosome 2)
- Progressive Retinal Atrophy (SAG) (Chromosome 25)
- Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3) (Chromosome 37)
- Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8) (Chromosome 8)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

- Progressive Retinal Atrophy, crd1 (PDE6B) (Chromosome 3)
- · Progressive Retinal Atrophy, crd2 (IQCB1) (Chromosome 33)
- Progressive Retinal Atrophy crd4/cord1 (RPGRIP1) (Chromosome 15)
- Collie Eye Anomaly, Choroidal Hypoplasia, CEA (NHEJ1) (Chromosome 37)
- Achromatopsia (CNGA3 Exon 7 German Shepherd Variant) (Chromosome 10)
- Achromatopsia (CNGA3 Exon 7 Labrador Retriever Variant) (Chromosome 10)
- Autosomal Dominant Progressive Retinal Atrophy (RHO) (Chromosome 20)
- Canine Multifocal Retinopathy cmr1 (BEST1 Exon 2) (Chromosome 18)
- Canine Multifocal Retinopathy cmr2 (BEST1 Exon 5) (Chromosome 18)
- Canine Multifocal Retinopathy cmr3 (BEST1 Exon 10 Deletion) (Chromosome 18)
- Canine Multifocal Retinopathy cmr3 (BEST1 Exon 10 SNP) (Chromosome 18)
- Glaucoma Primary Open Angle Glaucoma (ADAMTS10 Exon 9) (Chromosome 20)
- Glaucoma Primary Open Angle Glaucoma (ADAMTS10 Exon 17) (Chromosome 20)
- Glaucoma Primary Open Angle Glaucoma (ADAMTS17 Exon 11) (Chromosome 3)
- Glaucoma Primary Open Angle Glaucoma (ADAMTS17 Exon 2) (Chromosome 3)
- Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts (HSF4 Exon 9 Shepherd Variant) (Chromosome 5)
- Primary Lens Luxation (ADAMTS17) (Chromosome 3)
- Congenital Stationary Night Blindness (RPE65) (Chromosome 6)
- · Macular Corneal Dystrophy, MCD (CHST6) (Chromosome 5)
- 2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis (APRT) (Chromosome 5)
- Cystinuria Type I-A (SLC3A1) (Chromosome 10)
- Cystinuria Type II-A (SLC3A1) (Chromosome 10)
- Cystinuria Type II-B (SLC7A9) (Chromosome 1)
- · Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU (SLC2A9) (Chromosome 3)
- Polycystic Kidney Disease, PKD (PKD1) (Chromosome 6)
- · Primary Hyperoxaluria (AGXT) (Chromosome 25)
- · Protein Losing Nephropathy, PLN (NPHS1) (Chromosome 1)
- X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2) (Chromosome X)
- · Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 3) (Chromosome 25)
- Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3) (Chromosome 34)
- Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly Coat Syndrome, CKCSID (FAM83H Exon 5)
 (Chromosome 13)
- X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia (EDA Intron 8) (Chromosome X)
- Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND (FLCN Exon 7) (Chromosome 5)
- Glycogen Storage Disease Type II, Pompe's Disease, GSD II (GAA) (Chromosome 9)
- Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC) (Chromosome 9)
- Glycogen Storage Disease Type IIIA, GSD IIIA (AGL) (Chromosome 6)
- Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6 Variant 1) (Chromosome 9)
- Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6 Variant 2) (Chromosome 9)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

- Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5) (Chromosome 6)
- · Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3) (Chromosome 6)
- Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM Whippet and English Springer Spaniel Variant) (Chromosome 27)
- Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM Wachtelhund Variant) (Chromosome 27)
- Lagotto Storage Disease (ATG4D) (Chromosome 20)
- Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8) (Chromosome 15)
- Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4) (Chromosome 21)
- Neuronal Ceroid Lipofuscinosis 1, Cerebellar Ataxia, NCL-A (ARSG Exon 2) (Chromosome 9)
- Neuronal Ceroid Lipofuscinosis 1, NCL 1 (CLN5 Border Collie Variant) (Chromosome 22)
- Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7) (Chromosome 30)
- Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 English Setter Variant) (Chromosome 37)
- Neuronal Ceroid Lipofuscinosis (MFSD8) (Chromosome 19)
- Neuronal Ceroid Lipofuscinosis (CLN8 Australian Shepherd Variant) (Chromosome 37)
- · Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5) (Chromosome 18)
- Neuronal Ceroid Lipofuscinosis (CLN5 Golden Retriever Variant) (Chromosome 22)
- Adult-Onset Neuronal Ceroid Lipofuscinosis (ATP13A2) (Chromosome 2)
- GM1 Gangliosidosis (GLB1 Exon 15 Shiba Inu Variant) (Chromosome 23)
- GM1 Gangliosidosis (GLB1 Exon 15 Alaskan Husky Variant) (Chromosome 23)
- GM1 Gangliosidosis (GLB1 Exon 2) (Chromosome 23)
- GM2 Gangliosidosis (HEXA) (Chromosome 30)
- Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5) (Chromosome 8)
- · Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (Italian Greyhound Variant) (Chromosome 13)
- Persistent Mullerian Duct Syndrome, PMDS (AMHR2) (Chromosome 27)
- · Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (Chromosome 21)
- Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP) (Chromosome 13)
- Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy (SLC19A3) (Chromosome 25)
- Alexander Disease (GFAP) (Chromosome 9)
- Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD (SPTBN2) (Chromosome 18)
- Cerebellar Ataxia, Progressive Early-Onset Cerebellar Ataxia (SEL1L) (Chromosome 8)
- Cerebellar Hypoplasia (VLDLR) (Chromosome 1)
- Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA (CAPN1) (Chromosome 18)
- Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10) (Chromosome 38)
- Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy (LGI2) (Chromosome 3)
- Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2) (Chromosome 2)
- Hypomyelination and Tremors (FNIP2) (Chromosome 15)
- Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome (PLP) (Chromosome X)
- L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH) (Chromosome 0)
- Polyneuropathy, NDRG1 Greyhound Variant (NDRG1 Exon 15) (Chromosome 13)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

- Polyneuropathy, NDRG1 Malamute Variant (NDRG1 Exon 4) (Chromosome 13)
- Narcolepsy (HCRTR2 Intron 6) (Chromosome 12)
- · Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 15) (Chromosome 1)
- Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 4) (Chromosome 1)
- Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV (RAB3GAP1, Rottweiler Variant) (Chromosome 19)
- · Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS (GDNF-AS) (Chromosome 4)
- Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 (LPN1, ARHGEF10) (Chromosome 16)
- Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome (KCNJ10) (Chromosome 38)
- Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 (ATP1B2) (Chromosome 5)
- Dilated Cardiomyopathy, DCM1 (PDK4) (Chromosome 14)
- Dilated Cardiomyopathy, DCM2 (TTN) (Chromosome 36)
- Long QT Syndrome (KCNQ1) (Chromosome 18)
- Muscular Dystrophy Cavalier King Charles Spaniel Variant 1 (Chromosome X)
- Muscular Dystrophy Muscular Dystrophy (DMD Pembroke Welsh Corqi Variant) (Chromosome X)
- Muscular Dystrophy Muscular Dystrophy (DMD Golden Retriever Variant) (Chromosome X)
- · Centronuclear Myopathy (PTPLA) (Chromosome 2)
- Exercise-Induced Collapse (DNM1) (Chromosome 9)
- · Inherited Myopathy of Great Danes (BIN1) (Chromosome 19)
- Myostatin Deficiency, Bully Whippet Syndrome (MSTN) (Chromosome 37)
- Myotonia Congenita (CLCN1 Exon 7) (Chromosome 16)
- Myotonia Congenita (CLCN1 Exon 23) (Chromosome 16)
- Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM (MTM1, Labrador Variant) (Chromosome X)
- · Hypocatalasia, Acatalasemia (CAT) (Chromosome 18)
- Pyruvate Dehydrogenase Deficiency (PDP1) (Chromosome 29)
- Malignant Hyperthermia (RYR1) (Chromosome 1)
- Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 53) (Chromosome 2)
- Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 8) (Chromosome 2)
- Congenital Myasthenic Syndrome (CHAT) (Chromosome 28)
- Congenital Myasthenic Syndrome (COLQ) (Chromosome 23)
- Episodic Falling Syndrome (BCAN) (Chromosome 7)
- Dystrophic Epidermolysis Bullosa (COL7A1) (Chromosome 20)
- Ectodermal Dysplasia, Skin Fragility Syndrome (PKP1) (Chromosome 7)
- Ichthyosis, Epidermolytic Hyperkeratosis (KRT10) (Chromosome 9)
- Ichthyosis (PNPLA1) (Chromosome 12)
- Ichthyosis (SLC27A4) (Chromosome 9)
- Ichthyosis (NIPAL4) (Chromosome 4)
- Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita (KRT16) (Chromosome 9)
- Hereditary Footpad Hyperkeratosis (FAM83G) (Chromosome 5)

DNA Test Report Test Date: October 5th, 2018 embk.me/stella213

- Hereditary Nasal Parakeratosis (SUV39H2) (Chromosome 2)
- Musladin-Lueke Syndrome (ADAMTSL2) (Chromosome 9)
- Cleft Lip and/or Cleft Palate (ADAMTS20) (Chromosome 27)
- Hereditary Vitamin D-Resistant Rickets (VDR) (Chromosome 27)
- Oculoskeletal Dysplasia 1, Dwarfism-Retinal Dysplasia, OSD1 (COL9A3, Labrador Retriever) (Chromosome 24)
- Osteogenesis Imperfecta, Brittle Bone Disease (COL1A2) (Chromosome 14)
- Osteogenesis Imperfecta, Brittle Bone Disease (SERPINH1) (Chromosome 21)
- Osteogenesis Imperfecta, Brittle Bone Disease (COL1A1) (Chromosome 9)
- Skeletal Dysplasia 2, SD2 (COL11A2) (Chromosome 12)
- Craniomandibular Osteopathy, CMO (SLC37A2) (Chromosome 5)